Smallest Maximum Eigenvalue Averaging (SMEA)#
- class byzfl.SMEA(f=0)[source]#
Description#
Implements the Smallest Maximum Eigenvalue Averaging (SMEA) rule [1], a robust aggregation method that selects the subset of client vectors whose covariance has the lowest maximum eigenvalue, then returns their average.
Formally, given a set of input vectors \(x_1, \dots, x_n \in \mathbb{R}^d\) and an integer \(f\) representing the number of potential Byzantine vectors, the algorithm proceeds as follows:
Enumerate all subsets \(S \subset [n]\) of size \(n - f\).
For each subset \(S\), compute its empirical mean:
\[\mu_S = \frac{1}{|S|} \sum_{i \in S} x_i\]Compute the empirical covariance matrix:
\[\Sigma_S = \frac{1}{|S|} \sum_{i \in S} (x_i - \mu_S)(x_i - \mu_S)^\top\]Using the power method [2], compute the maximum eigenvalue \(\lambda_{\max}(\Sigma_S)\) of each subset’s covariance.
Select the subset \(S^\star\) that minimizes the maximum eigenvalue:
\[S^\star = \arg\min_{S: |S|=n-f} \lambda_{\max}(\Sigma_S)\]Return the empirical mean of the optimal subset \(S^\star\):
\[\text{SMEA}(x_1, \dots, x_n) = \frac{1}{|S^\star|} \sum_{i \in S^\star} x_i\]
While computationally expensive due to its combinatorial nature, SMEA provides state-of-the-art robustness guarantees [1]. This method is thus particularly well-suited to federated settings where the number of clients is not too large.
- Initialization parameters:
f (int, optional) – Number of faulty vectors. Set to 0 by default.
Calling the instance
- Input parameters:
vectors (numpy.ndarray, torch.Tensor, list of numpy.ndarray or list of torch.Tensor) – A set of vectors, matrix or tensors.
- Returns:
numpy.ndarray or torch.Tensor – The data type of the output will be the same as the input.
Examples
>>> import byzfl >>> agg = byzfl.SMEA(1)
Using numpy arrays
>>> import numpy as np >>> x = np.array([[1., 2., 3.], # np.ndarray >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> agg(x) array([2.5, 3.5, 4.5])
Using torch tensors
>>> import torch >>> x = torch.tensor([[1., 2., 3.], # torch.tensor >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> agg(x) tensor([2.5000, 3.5000, 4.5000])
Using list of numpy arrays
>>> import numpy as np >>> x = [np.array([1., 2., 3.]), # list of np.ndarray >>> np.array([4., 5., 6.]), >>> np.array([7., 8., 9.])] >>> agg(x) array([2.5, 3.5, 4.5])
Using list of torch tensors
>>> import torch >>> x = [torch.tensor([1., 2., 3.]), # list of torch.tensor >>> torch.tensor([4., 5., 6.]), >>> torch.tensor([7., 8., 9.])] >>> agg(x) tensor([2.5000, 3.5000, 4.5000])
References