Nearest Neighbor Mixing (NNM)#
- class byzfl.NNM(f=0)[source]#
Description#
Apply the Nearest Neighbor Mixing pre-aggregation rule [1]:
\[\mathrm{NNM}_{f} \ (x_1, \dots, x_n) = \left(\frac{1}{n-f}\sum_{i \in \mathit{N}_{1}} x_i \ \ , \ \dots \ ,\ \ \frac{1}{n-f}\sum_{i \in \mathit{N}_{n}} x_i \right)\]where
\(x_1, \dots, x_n\) are the input vectors, which conceptually correspond to gradients submitted by honest and Byzantine participants during a training iteration.
\(f\) conceptually represents the expected number of Byzantine vectors.
For any \(i \in \) \(\big[n\big]\), \(\mathit{N}_i\) is the set of the \(n-f\) nearest neighbors of \(x_i\) in \(\{x_1, \dots , x_n\}\).
- Initialization parameters:
f (int, optional) – Number of faulty vectors. Set to 0 by default.
Calling the instance
- Input parameters:
vectors (numpy.ndarray, torch.Tensor, list of numpy.ndarray or list of torch.Tensor) – A set of vectors, matrix or tensors.
- Returns:
numpy.ndarray or torch.Tensor – The data type of the output will be the same as the input.
Examples
>>> import byzfl >>> agg = byzfl.NNM(1)
Using numpy arrays
>>> import numpy as np >>> x = np.array([[1., 2., 3.], # np.ndarray >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> agg(x) array([[2.5 3.5 4.5] [2.5 3.5 4.5] [5.5 6.5 7.5]])
Using torch tensors
>>> import torch >>> x = torch.tensor([[1., 2., 3.], # torch.tensor >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> agg(x) tensor([[2.5000, 3.5000, 4.5000], [2.5000, 3.5000, 4.5000], [5.5000, 6.5000, 7.5000]])
Using list of numpy arrays
>>> import numpy as np >>> x = [np.array([1., 2., 3.]), # list of np.ndarray >>> np.array([4., 5., 6.]), >>> np.array([7., 8., 9.])] >>> agg(x) array([[2.5 3.5 4.5] [2.5 3.5 4.5] [5.5 6.5 7.5]])
Using list of torch tensors
>>> import torch >>> x = [torch.tensor([1., 2., 3.]), # list of torch.tensor >>> torch.tensor([4., 5., 6.]), >>> torch.tensor([7., 8., 9.])] >>> agg(x) tensor([[2.5000, 3.5000, 4.5000], [2.5000, 3.5000, 4.5000], [5.5000, 6.5000, 7.5000]])
References