Covariance-bound Agnostic Filter (CAF)#
- class byzfl.CAF(f=0)[source]#
Description#
Implements the Covariance-bound Agnostic Filter (CAF) [1], a robust aggregator designed to tolerate Byzantine inputs without requiring a bound on the covariance of honest vectors.
The algorithm iteratively estimates a robust mean by downweighting samples whose deviations from the mean are aligned with the dominant eigenvector of the empirical covariance matrix.
Precisely, given a set of input vectors \(x_1, \dots, x_n \in \mathbb{R}^d\), the algorithm proceeds as follows:
Initialize weights \(c_i = 1\) for all \(i \in [n]\).
- Repeat until the total weight \(\sum_i c_i \leq n - 2f\):
Compute the weighted empirical mean:
\[\mu_c = \frac{1}{\sum_i c_i} \sum_{i=1}^n c_i x_i\]Using the power method [2], compute the dominant eigenvector \(v\) and maximum eigenvalue \(\lambda_{max}\) of the empirical covariance matrix:
\[\Sigma_c = \frac{1}{\sum_i c_i} \sum_{i=1}^n c_i (x_i - \mu_c)(x_i - \mu_c)^\top\]For each vector, compute the projection squared:
\[\tau_i = ((x_i - \mu_c)^\top v)^2\]Downweight outliers:
\[c_i \leftarrow c_i \cdot \left(1 - \frac{\tau_i}{\max_j \tau_j}\right)\]
Return the empirical mean \(\mu_c\) corresponding to the smallest maximum eigenvalue \(\lambda_{max}\) encountered.
This algorithm does not assume any upper bound on the spectral norm of the covariance matrix and is especially suited to settings with high-dimensional or heterogeneously distributed data.
- Initialization parameters:
f (int, optional) – Number of faulty vectors. Set to 0 by default.
Calling the instance
- Input parameters:
vectors (numpy.ndarray, torch.Tensor, list of numpy.ndarray or list of torch.Tensor) – A set of vectors, matrix or tensors.
- Returns:
numpy.ndarray or torch.Tensor – The data type of the output will be the same as the input.
Examples
>>> import byzfl >>> agg = byzfl.CAF(1)
Using numpy arrays
>>> import numpy as np >>> x = np.array([[1., 2., 3.], # np.ndarray >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> agg(x) array([4. 5. 6.])
Using torch tensors
>>> import torch >>> x = torch.tensor([[1., 2., 3.], # torch.tensor >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> agg(x) tensor([4., 5., 6.])
Using list of numpy arrays
>>> import numpy as np >>> x = [np.array([1., 2., 3.]), # list of np.ndarray >>> np.array([4., 5., 6.]), >>> np.array([7., 8., 9.])] >>> agg(x) array([4., 5., 6.])
Using list of torch tensors
>>> import torch >>> x = [torch.tensor([1., 2., 3.]), # list of torch.tensor >>> torch.tensor([4., 5., 6.]), >>> torch.tensor([7., 8., 9.])] >>> agg(x) tensor([4., 5., 6.])
References