Static Clipping#

class byzfl.Clipping(c=2.0)[source]#

Description#

Apply the Static Clipping pre-aggregation rule:

\[\mathrm{Clipping}_{c} \ (x_1, \dots, x_n) = \left( \min\left\{1, \frac{c}{\big|\big|x_1\big|\big|_2}\right\} x_1 \ \ , \ \dots \ ,\ \ \min\left\{1, \frac{c}{\big|\big|x_n\big|\big|_2}\right\} x_n \right)\]

where

  • \(x_1, \dots, x_n\) are the input vectors, which conceptually correspond to gradients submitted by honest and Byzantine participants during a training iteration.

  • \(\big|\big|.\big|\big|_2\) denotes the \(\ell_2\)-norm.

  • \(c \geq 0\) is the static clipping threshold. Any input vector with an \(\ell_2\)-norm greater than \(c\) will be will be scaled down such that its \(\ell_2\)-norm equals \(c\).

Initialization parameters:

c (float, optional) – Static clipping threshold. Set to 2.0 by default.

Calling the instance

Input parameters:

vectors (numpy.ndarray, torch.Tensor, list of numpy.ndarray or list of torch.Tensor) – A set of vectors, matrix or tensors.

Returns:

numpy.ndarray or torch.Tensor – The data type of the output will be the same as the input.

Examples

>>> import byzfl
>>> agg = byzfl.Clipping(2.0)

Using numpy arrays

>>> import numpy as np
>>> x = np.array([[1., 2., 3.],       # np.ndarray
>>>               [4., 5., 6.],
>>>               [7., 8., 9.]])
>>> agg(x)
array([[0.53452248, 1.06904497, 1.60356745],
        [0.91168461, 1.13960576, 1.36752692],
        [1.00514142, 1.14873305, 1.29232469]])

Using torch tensors

>>> import torch
>>> x = torch.tensor([[1., 2., 3.],   # torch.tensor
>>>                   [4., 5., 6.],
>>>                   [7., 8., 9.]])
>>> agg(x)
tensor([[0.5345, 1.0690, 1.6036],
        [0.9117, 1.1396, 1.3675],
        [1.0051, 1.1487, 1.2923]])

Using list of numpy arrays

>>> import numpy as np
>>> x = [np.array([1., 2., 3.]),      # list of np.ndarray
>>>      np.array([4., 5., 6.]),
>>>      np.array([7., 8., 9.])]
>>> agg(x)
array([[0.53452248, 1.06904497, 1.60356745],
        [0.91168461, 1.13960576, 1.36752692],
        [1.00514142, 1.14873305, 1.29232469]])

Using list of torch tensors

>>> import torch
>>> x = [torch.tensor([1., 2., 3.]),  # list of  torch.tensor
>>>      torch.tensor([4., 5., 6.]),
>>>      torch.tensor([7., 8., 9.])]
>>> agg(x)
tensor([[0.5345, 1.0690, 1.6036],
        [0.9117, 1.1396, 1.3675],
        [1.0051, 1.1487, 1.2923]])