Median#
- class byzfl.Median[source]#
Description#
Compute the coordinate-wise median along the first axis [1]:
\[\big[\mathrm{Median} \ (x_1, \dots, x_n)\big]_k = \mathrm{median} \big(\big[x_1\big]_k, \dots, \big[x_n\big]_k\big)\]where
\(x_1, \dots, x_n\) are the input vectors, which conceptually correspond to gradients submitted by honest and Byzantine participants during a training iteration.
\(\big[\cdot\big]_k\) refers to the \(k\)-th coordinate.
\(\mathrm{median}\) refers to the median of \(n\) scalars.
- Initialization parameters:
None
Calling the instance
- Input parameters:
vectors (numpy.ndarray, torch.Tensor, list of numpy.ndarray or list of torch.Tensor) – A set of vectors, matrix or tensors.
- Returns:
numpy.ndarray or torch.Tensor – The data type of the output will be the same as the input.
Examples
>>> import byzfl >>> agg = byzfl.Median()
Using numpy arrays
>>> import numpy as np >>> x = np.array([[1., 2., 3.], # np.ndarray >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> agg(x) array([4. 5. 6.])
Using torch tensors
>>> import torch >>> x = torch.tensor([[1., 2., 3.], # torch.tensor >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> agg(x) tensor([4., 5., 6.])
Using list of numpy arrays
>>> import numpy as np >>> x = [np.array([1., 2., 3.]), # list of np.ndarray >>> np.array([4., 5., 6.]), >>> np.array([7., 8., 9.])] >>> agg(x) array([4., 5., 6.])
Using list of torch tensors
>>> import torch >>> x = [torch.tensor([1., 2., 3.]), # list of torch.tensor >>> torch.tensor([4., 5., 6.]), >>> torch.tensor([7., 8., 9.])] >>> agg(x) tensor([4., 5., 6.])
References