Minimum-Diameter Averaging#
- class byzfl.MDA(f=0)[source]#
Description#
Apply the Minimum-Diameter Averaging aggregator [1]:
\[\mathrm{MDA}_{f} \ (x_1, \dots, x_n) = \frac{1}{n-f} \sum_{i\in S^\star} x_i\]where
\(x_1, \dots, x_n\) are the input vectors, which conceptually correspond to gradients submitted by honest and Byzantine participants during a training iteration.
\(f\) conceptually represents the expected number of Byzantine vectors.
\(\big|\big|.\big|\big|_2\) denotes the \(\ell_2\)-norm.
- \[\begin{split}S^\star \in \argmin_{\substack{S \subset \{1,\dots,n\} \\ |S|=n-f}} \left\{\max_{i,j \in S} \big|\big|x_i - x_j\big|\big|_2\right\}.\end{split}\]
- Initialization parameters:
f (int, optional) – Number of faulty vectors. Set to 0 by default.
Calling the instance
- Input parameters:
vectors (numpy.ndarray, torch.Tensor, list of numpy.ndarray or list of torch.Tensor) – A set of vectors, matrix or tensors.
- Returns:
numpy.ndarray or torch.Tensor – The data type of the output will be the same as the input.
Examples
>>> import byzfl >>> agg = byzfl.MDA(1)
Using numpy arrays
>>> import numpy as np >>> x = np.array([[1., 2., 3.], # np.ndarray >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> agg(x) array([2.5, 3.5, 4.5])
Using torch tensors
>>> import torch >>> x = torch.tensor([[1., 2., 3.], # torch.tensor >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> agg(x) tensor([2.5000, 3.5000, 4.5000])
Using list of numpy arrays
>>> import numpy as np >>> x = [np.array([1., 2., 3.]), # list of np.ndarray >>> np.array([4., 5., 6.]), >>> np.array([7., 8., 9.])] >>> agg(x) array([2.5, 3.5, 4.5])
Using list of torch tensors
>>> import torch >>> x = [torch.tensor([1., 2., 3.]), # list of torch.tensor >>> torch.tensor([4., 5., 6.]), >>> torch.tensor([7., 8., 9.])] >>> agg(x) tensor([2.5000, 3.5000, 4.5000])
References