Trimmed Mean#
- class byzfl.TrMean(f=0)[source]#
Description#
Compute the trimmed mean (or truncated mean) along the first axis [1]:
\[\big[\mathrm{TrMean}_{f} \ (x_1, \dots, x_n)\big]_k = \frac{1}{n - 2f}\sum_{j = f+1}^{n-f} \big[x_{\pi(j)}\big]_k\]where
\(x_1, \dots, x_n\) are the input vectors, which conceptually correspond to gradients submitted by honest and Byzantine participants during a training iteration.
\(f\) conceptually represents the expected number of Byzantine vectors.
\(\big[\cdot\big]_k\) refers to the \(k\)-th coordinate.
\(\pi\) denotes a permutation on \(\big[n\big]\) that sorts the \(k\)-th coordinate of the input vectors in non-decreasing order, i.e., \(\big[x_{\pi(1)}\big]_k \leq …\leq \big[x_{\pi(n)}\big]_k\).
In other words, TrMean removes the \(f\) largest and \(f\) smallest coordinates per dimension, and then applies the average over the remaining coordinates.
- Initialization parameters:
f (int, optional) – Number of faulty vectors. Set to 0 by default.
Calling the instance
- Input parameters:
vectors (numpy.ndarray, torch.Tensor, list of numpy.ndarray or list of torch.Tensor) – A set of vectors, matrix or tensors.
- Returns:
numpy.ndarray or torch.Tensor – The data type of the output will be the same as the input.
Examples
>>> import byzfl >>> agg = byzfl.TrMean(1)
Using numpy arrays
>>> import numpy as np >>> x = np.array([[1., 2., 3.], # np.ndarray >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> agg(x) array([4. 5. 6.])
Using torch tensors
>>> import torch >>> x = torch.tensor([[1., 2., 3.], # torch.tensor >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> agg(x) tensor([4., 5., 6.])
Using list of numpy arrays
>>> import numpy as np >>> x = [np.array([1., 2., 3.]), # list of np.ndarray >>> np.array([4., 5., 6.]), >>> np.array([7., 8., 9.])] >>> agg(x) array([4., 5., 6.])
Using list of torch tensors
>>> import torch >>> x = [torch.tensor([1., 2., 3.]), # list of torch.tensor >>> torch.tensor([4., 5., 6.]), >>> torch.tensor([7., 8., 9.])] >>> agg(x) tensor([4., 5., 6.])
References