Krum#
- class byzfl.Krum(f=0)[source]#
Description#
Apply the Krum aggregator [1]:
\[\mathrm{Krum}_{f} \ (x_1, \dots, x_n) = x_{\lambda}\]with
\[\lambda \in \argmin_{i \in \big[n\big]} \sum_{x \in \mathit{N}_i} \big|\big|x_i - x\big|\big|^2_2\]where
\(x_1, \dots, x_n\) are the input vectors, which conceptually correspond to gradients submitted by honest and Byzantine participants during a training iteration.
\(f\) conceptually represents the expected number of Byzantine vectors.
\(\big|\big|.\big|\big|_2\) denotes the \(\ell_2\)-norm.
For any \(i \in \big[n\big]\), \(\mathit{N}_i\) is the set of the \(n − f\) nearest neighbors of \(x_i\) in \(\{x_1, \dots , x_n\}\).
- Initialization parameters:
f (int, optional) – Number of faulty vectors. Set to 0 by default.
Calling the instance
- Input parameters:
vectors (numpy.ndarray, torch.Tensor, list of numpy.ndarray or list of torch.Tensor) – A set of vectors, matrix or tensors.
- Returns:
numpy.ndarray or torch.Tensor – The data type of the output will be the same as the input.
Examples
>>> import byzfl >>> agg = byzfl.Krum(1)
Using numpy arrays
>>> import numpy as np >>> x = np.array([[1., 2., 3.], # np.ndarray >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> agg(x) array([1. 2. 3.])
Using torch tensors
>>> import torch >>> x = torch.tensor([[1., 2., 3.], # torch.tensor >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> agg(x) tensor([1., 2., 3.])
Using list of numpy arrays
>>> import numpy as np >>> x = [np.array([1., 2., 3.]), # list of np.ndarray >>> np.array([4., 5., 6.]), >>> np.array([7., 8., 9.])] >>> agg(x) array([1. 2. 3.])
Using list of torch tensors
>>> import torch >>> x = [torch.tensor([1., 2., 3.]), # list of torch.tensor >>> torch.tensor([4., 5., 6.]), >>> torch.tensor([7., 8., 9.])] >>> agg(x) tensor([1., 2., 3.])
References