Sign Flipping#
- class byzfl.SignFlipping[source]#
Bases:
object
Description#
Send the opposite of the mean vector [1].
\[\mathrm{SignFlipping} \ (x_1, \dots, x_n) = - \frac{1}{n}\sum_{i=1}^{n} x_i\]where
\(x_1, \dots, x_n\) are the input vectors, which conceptually correspond to correct gradients submitted by honest participants during a training iteration.
- Initialization parameters:
None
Calling the instance
- Input parameters:
vectors (numpy.ndarray, torch.Tensor, list of numpy.ndarray or list of torch.Tensor) – A set of vectors, matrix or tensors.
- Returns:
numpy.ndarray or torch.Tensor – The data type of the output is the same as the input.
Examples
>>> import byzfl >>> attack = byzfl.SignFlipping()
Using numpy arrays
>>> import numpy as np >>> x = np.array([[1., 2., 3.], # np.ndarray >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> attack(x) array([-4. -5. -6.])
Using torch tensors
>>> import torch >>> x = torch.tensor([[1., 2., 3.], # torch.tensor >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> attack(x) tensor([-4., -5., -6.])
Using list of numpy arrays
>>> import numpy as np >>> x = [np.array([1., 2., 3.]), # list of np.ndarray >>> np.array([4., 5., 6.]), >>> np.array([7., 8., 9.])] >>> attack(x) array([-4., -5., -6.])
Using list of torch tensors
>>> import torch >>> x = [torch.tensor([1., 2., 3.]), # list of torch.tensor >>> torch.tensor([4., 5., 6.]), >>> torch.tensor([7., 8., 9.])] >>> attack(x) tensor([-4., -5., -6.])
References