Infinity#
- class byzfl.Inf[source]#
Bases:
object
Description#
Generate extreme vector comprised of positive infinity values.
\[\begin{split}\mathrm{Inf}(x_1, \dots, x_n) = \begin{bmatrix} +\infty \\ +\infty \\ \vdots \\ +\infty \end{bmatrix} \in \mathbb{R}^d\end{split}\]where
\(x_1, \dots, x_n\) are the input vectors, which conceptually correspond to correct gradients submitted by honest participants during a training iteration.
\(d\) is the dimensionality of the input space, i.e., \(d\) is the number of coordinates of vectors \(x_1, \dots, x_n\).
- Initialization parameters:
None
Calling the instance
- Input parameters:
vectors (numpy.ndarray, torch.Tensor, list of numpy.ndarray or list of torch.Tensor) – A set of vectors, matrix or tensors.
- Returns:
numpy.ndarray or torch.Tensor – The data type of the output is the same as the input.
Examples
>>> import byzfl >>> attack = byzfl.Inf()
Using numpy arrays:
>>> import numpy as np >>> x = np.array([[1., 2., 3.], # np.ndarray >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> attack(x) array([inf, inf, inf])
Using torch tensors:
>>> import torch >>> x = torch.tensor([[1., 2., 3.], # torch.tensor >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> attack(x) tensor([inf, inf, inf])
Using list of numpy arrays
>>> import numpy as np >>> x = [np.array([1., 2., 3.]), # list of np.ndarray >>> np.array([4., 5., 6.]), >>> np.array([7., 8., 9.])] >>> attack(x) array([inf, inf, inf])
Using list of torch tensors (Warning: We need the tensor to be either a floating point or complex dtype):
>>> import torch >>> x = [torch.tensor([1., 2., 3.]), # list of torch.tensor >>> torch.tensor([4., 5., 6.]), >>> torch.tensor([7., 8., 9.])] >>> attack(x) tensor([inf, inf, inf])