Gaussian#
- class byzfl.Gaussian(mu=0.0, sigma=1.0)[source]#
Bases:
object
Description#
Generate a random vector where each coordinate is independently sampled from a Gaussian distribution.
\[\begin{split}\mathrm{Gaussian}_{\mu, \sigma}(x_1, \dots, x_n) = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_d \end{bmatrix} \in \mathbb{R}^d\end{split}\]where:
\(x_1, \dots, x_n\) are the input vectors, which conceptually correspond to correct gradients submitted by honest participants during a training iteration.
\(d\) is the dimensionality of the input space, i.e., \(d\) is the number of coordinates of vectors \(x_1, \dots, x_n\).
\(\mathit{N}(\mu, \sigma^2)\) is the Gaussian distribution of mean \(\mu \in \mathbb{R}\) and standard deviation \(\sigma \geq 0\).
\(g_i \sim \mathit{N}(\mu, \sigma^2)\) for all \(i \in \{1, \dots, d\}\).
- Initialization parameters:
mu (float, optional (default=0.0)) – Mean of the Gaussian distribution.
sigma (float, optional (default=1.0)) – Standard deviation of the Gaussian distribution.
Calling the instance
- Input parameters:
vectors (numpy.ndarray, torch.Tensor, list of numpy.ndarray or list of torch.Tensor) – A set of vectors, matrix or tensors.
- Returns:
numpy.ndarray or torch.Tensor – The data type of the output is the same as the input.
Examples
>>> import byzfl >>> attack = byzfl.Gaussian(mu=0.0, sigma=1.0)
Using numpy arrays
>>> import numpy as np >>> x = np.array([[1., 2., 3.], # np.ndarray >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> attack(x) array([-0.08982162 0.07237574 0.55886579])
Using torch tensors
>>> import torch >>> x = torch.tensor([[1., 2., 3.], # torch.tensor >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> attack(x) tensor([ 0.9791, 0.0266, -1.0112])
Using list of numpy arrays
>>> import numpy as np >>> x = [np.array([1., 2., 3.]), # list of np.ndarray >>> np.array([4., 5., 6.]), >>> np.array([7., 8., 9.])] >>> attack(x) array([-0.08982162 0.07237574 0.55886579])
Using list of torch tensors
>>> import torch >>> x = [torch.tensor([1., 2., 3.]), # list of torch.tensor >>> torch.tensor([4., 5., 6.]), >>> torch.tensor([7., 8., 9.])] >>> attack(x) tensor([ 0.9791, 0.0266, -1.0112])