Inner Product Manipulation (IPM)#
- class byzfl.InnerProductManipulation(tau=2.0)[source]#
Bases:
object
Description#
Execute the Inner Product Manipulation (IPM) attack [1]: multiplicatively scale the mean vector by \(- \tau\).
\[\text{IPM}_{\tau}(x_1, \dots, x_n) = - \tau \cdot \frac{1}{n} \sum_{i=1}^{n} x_i\]where
\(x_1, \dots, x_n\) are the input vectors, which conceptually correspond to correct gradients submitted by honest participants during a training iteration.
\(\tau > 0\) is the attack factor.
- Initialization parameters:
tau (float, optional) – The attack factor \(\tau\) used to adjust the mean vector. Set to 2.0 by default.
Calling the instance
- Input parameters:
vectors (numpy.ndarray, torch.Tensor, list of numpy.ndarray or list of torch.Tensor) – A set of vectors, matrix or tensors.
- Returns:
numpy.ndarray or torch.Tensor – The data type of the output is the same as the input.
Examples
>>> import byzfl >>> attack = byzfl.InnerProductManipulation(2.0)
Using numpy arrays
>>> import numpy as np >>> x = np.array([[1., 2., 3.], # np.ndarray >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> attack(x) array([ -8. -10. -12.])
Using torch tensors
>>> import torch >>> x = torch.tensor([[1., 2., 3.], # torch.tensor >>> [4., 5., 6.], >>> [7., 8., 9.]]) >>> attack(x) tensor([-8., -10., -12.])
Using list of numpy arrays
>>> import numpy as np >>> x = [np.array([1., 2., 3.]), # list of np.ndarray >>> np.array([4., 5., 6.]), >>> np.array([7., 8., 9.])] >>> attack(x) array([ -8. -10. -12.])
Using list of torch tensors
>>> import torch >>> x = [torch.tensor([1., 2., 3.]), # list of torch.tensor >>> torch.tensor([4., 5., 6.]), >>> torch.tensor([7., 8., 9.])] >>> attack(x) tensor([-8., -10., -12.])
References